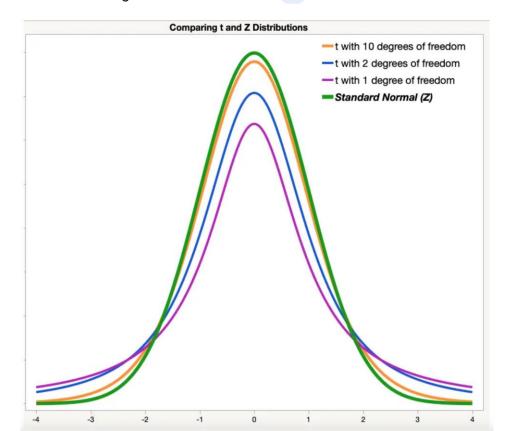
Unterschied zwischen t-Verteilung und Normalverteilung

Die t-Verteilung und die Normalverteilung sind beide glockenförmige, symmetrische Wahrscheinlichkeitsverteilungen, aber die t-Verteilung hat schwerere Ränder und ist daher bei kleinen Stichproben genauer. Die t-Verteilung wird verwendet, wenn die Standardabweichung der Grundgesamtheit unbekannt ist, während die Normalverteilung die Verwendung einer bekannten Populationsstandardabweichung erfordert. Mit zunehmender Stichprobengröße nähert sich die t-Verteilung der Normalverteilung an.

Hauptunterschiede


- Stichprobengröße und Standardabweichung: Die t-Verteilung ist nützlich für kleine Stichproben (n < 30), wenn die Standardabweichung der Grundgesamtheit unbekannt ist. Die Normalverteilung ist für große Stichproben oder wenn die Standardabweichung der Grundgesamtheit bekannt ist, geeignet.
- Form: Beide sind glockenförmig und symmetrisch um den Mittelwert (0), aber die t-Verteilung hat eine breitere Streuung und schwerere Ränder, was sie bei Extremwerten weniger vorhersehbar macht.
- Anpassungsfähigkeit: Die Form der t-Verteilung wird durch die "Freiheitsgrade" bestimmt (oft n-1 für eine Stichprobe der Größe n). Je höher die Freiheitsgrade (also je größer die Stichprobe), desto näher kommt die t-Verteilung der Normalverteilung.

Wann welche Verteilung verwenden?

- Verwenden Sie die t-Verteilung, wenn:
 - Sie eine kleine Stichprobe haben (n < 30).
 - Die Standardabweichung der Grundgesamtheit nicht bekannt ist und aus der Stichprobe geschätzt werden muss.

• Verwenden Sie die Normalverteilung, wenn:

- Sie die Standardabweichung der Grundgesamtheit kennen.
- Ihre Stichprobengröße groß genug ist (oft n ≥ 30) und die t-Verteilung mit der Normalverteilung nahezu identisch ist.

Was bedeutet in der t-Verteilungstabelle die letzte Zeile mit ∞ ?

Die letzte Zeile in einer t-Verteilungstabelle, die mit dem Unendlichkeitssymbol (∞) gekennzeichnet ist, enthält die Quantile der **Standardnormalverteilung** (auch z-Verteilung genannt).

Dies liegt daran, dass die t-Verteilung sich der Standardnormalverteilung annähert, wenn die Anzahl der Freiheitsgrade (df) unendlich groß wird. Je größer der Stichprobenumfang und damit die Freiheitsgrade sind, desto ähnlicher wird die t-Verteilung der glockenförmigen Standardnormalverteilung.

Praktisch bedeutet dies:

- Wenn Sie in der t-Tabelle die Werte für unendlich viele Freiheitsgrade ablesen, verwenden Sie eigentlich die **kritischen Werte der z-Verteilung**.
- Diese Werte werden verwendet, wenn der Stichprobenumfang sehr groß ist (oftmals ab ca. 30-100 Freiheitsgraden, abhängig von der Quelle), da die t-Werte dann kaum noch von den z-Werten abweichen.

$t_{(q)}$ -Verteilung (Student Verteilung)

$\alpha = 0.005$	$\alpha = 0.01$	$\alpha = 0.025$	$\alpha = 0.05$	$\alpha = 0.1$	q
63.657	31.821	12.706	6.314	3.078	1
9.925	6.965	4.303	2.920	1.886	2
5.841	4.541	3.182	2.353	1.638	3
4.604	3.747	2.776	2.132	1.533	4
4.032	3.365	2.571	2.015	1.476	5
3.707	3.143	2.447	1.943	1.440	6
3.499	2.998	2.365	1.895	1.415	7
3.355	2.896	2.306	1.860	1.397	8
3.250	2.821	2.262	1.833	1.383	9
3.169	2.764	2.228	1.812	1.372	10
3.106	2.718	2.201	1.796	1.363	11
3.055	2.681	2.179	1.782	1.356	12
3.012	2.650	2.160	1.771	1.350	13
2.977	2.624	2.145	1.761	1.345	14
2.947	2.602	2.131	1.753	1.341	15
2.921	2.583	2.120	1.746	1.337	16
2.898	2.567	2.110	1.740	1.333	17
2.878	2.552	2.101	1.734	1.330	18
2.861	2.539	2.093	1.729	1.328	19
2.845	2.528	2.086	1.725	1.325	20
2.831	2.518	2.080	1.721	1.323	21
2.819	2.508	2.074	1.717	1.321	22
2.807	2.500	2.069	1.714	1.319	23
2.797	2.492	2.064	1.711	1.318	24
2.787	2.485	2.060	1.708	1.316	25
2.779	2.479	2.056	1.706	1.315	26
2.771	2.473	2.052	1.703	1.314	27
2.763	2.467	2.048	1.701	1.313	28
2.756	2.462	2.045	1.699	1.311	29
2.750	2.457	2.042	1.697	1.310	30
2.704	2.423	2.021	1.684	1.303	40
2.660	2.390	2.000	1.671	1.296	60
2.617	2.358	1.980	1.658	1.289	120
2.576	2.327	1.960	1.645	1.282	∞